
Quality Assurance Project Plan

Performance Assessment Model

Clive, Utah

Prepared by

Neptune and Company
1505 15th St Suite B
Los Alamos, NM 87544

Document No: 06245-001

APPROVALS
________________________________ ___________

Paul Black Date
Neptune and Company Project Manager

________________________________ ___________

James Markwiese Date
Neptune and Company
Corporate Quality Assurance Officer

Contents

1.0 INTRODUCTION ... 1

2.0 PROJECT MANAGEMENT AND ORGANIZATION... 1

3.0 PERSONNEL QUALIFICATIONS AND TRAINING .. 2

4.0 PROJECT DESCRIPTION .. 3

5.0 CRITICAL TASKS AND SCHEDULE .. 4

6.0 QUALITY OBJECTIVES AND MODEL PERFORMANCE CRITERIA 5

7.0 DOCUMENTATION AND RECORDS ... 6

8.0 DATA ACCEPTANCE CRITERIA ... 6

9.0 DATA MANAGEMENT AND SOFTWARE CONFIGURATION .. 7

10.0 MODEL ASSESSMENT AND RESPONSE ACTIONS .. 7

11.0 MODEL REQUIREMENTS ASSESSMENT ... 8

Figures

Figure 1: N&C Organizational Chart ... 2

Tables

Table 1: Roles, Responsibilities, and Training ... 3
Table 2: Critical tasks for meeting project objectives, task products, and

scheduled completion dates. ... 4

Distribution List
K. Catlett
D. Gratson
W. Houghteling
R. Lee
J. Markwiese
G. McDermott
R. Perona
T. Stockton
M. Sully
J. Tauxe
Neptune and Company
1505 15th Street, Suite B
Los Alamos, NM 87544

P. Black
M. Balshi
M. Fitzgerald
M. Pocernich
Neptune and Company
8550 W. 14th Ave., Suite 100
Lakewood, CO 80215

M. Gross
MG Enterprises
415 Riveria Drive
San Rafael, CA 94901-1530

Quality Assurance Project Plan: Clive Performance Assessment Model

1.0 Introduction
This document describes the quality assurance project plan (QAPP) for modeling services
provided for the development of a performance assessment model for the disposal of depleted
uranium by EnergySolutions at the Clive, Utah facility. Throughout this document, the term
Quality Assurance (QA) refers to a program for the systematic monitoring and evaluation of the
various aspects of performance assessment model development to ensure that the models and
analyses are of the type and quality of that needed and expected by the client.

2.0 Project Management and Organization
Neptune and Company (N&C) has developed this QAPP for conducting work for
EnergySolutions under purchase order 008404. This QAPP is based on the Environmental
Protection Agency (EPA) QA/G-5M Guidance for Quality Assurance Project Plans for Modeling,
and our company’s nineteen year history working in the environmental quality arena. A tiered
approach is used that includes specific procedures developed by N&C that have been developed
for modeling projects. This project-specific QAPP will work as an umbrella plan that ensures
quality across all tasks.

The N&C quality program includes:

• Experienced and trained personnel who understand the QA requirements of each task.

• An experienced Project Manager.

• A corporate Quality Assurance Officer

• Task planning, tracking, and operation via internal SOPs.

• Emphasis on continuous improvement via internal reviews and customer feedback.

It is the policy of N&C to implement a quality program designed to generate products or services
that meet or exceed the expectations established by our clients. This quality policy addresses all
products delivered to our EnergySolutions client under the contract. We will ensure quality
through the use of a quality program that includes program and project management, systematic
planning, work and product assessment and control along with continuous improvement to
ensure that data and work products of acceptable quality to support the intended use are
produced.

To achieve this goal, N&C will assign appropriately qualified and trained staff and ensure that all
products are carefully planned. Tasks will be conducted according to the QAPP or applicable
SOP and any and all problems affecting quality will be brought to the immediate attention of the
project or task manager for resolution. All products will be reviewed by another technical expert.
Adequate budget and time will be planned to execute the quality system.

As indicated on Figure 1, the N&C organizational structure ensures direct reporting between the
N&C Project QA Officer and the Project Manager. This structure requires that all N&C
technical staff report to the N&C Project Manager who is responsible for the work.

Quality Assurance Project Plan: Clive Performance Assessment Model

The N&C Quality Assurance Officer has the authority and responsibility to ensure that the
project-specific QAPP is implemented by N&C staff. Roles and Responsibilities for this project
are detailed in Table 1. The QA aspects of the project are handled by those project members
responsible for any particular part of the project. The lead modeler is responsible for QA for the
GoldSim models. For probabilistic models, the lead statistician is responsible for QA of
statistical routines and products that feed into the model. The responsibility for other QA tasks
may be assigned to other project members at the direction of the lead modeler or lead statistician.
The model custodian is responsible for configuration control of the model. The role of model
custodian may be assumed by any project team member, but only one person at a time may be
the custodian.

3.0 Personnel Qualifications and Training
N&C technical staff is composed of highly qualified chemists, engineers, statisticians, IT
professionals, QA specialists, and biologists with advanced degrees in their fields and direct
training experience. Many of the N&C staff have participated in GoldSim training courses and
GoldSim User Conferences. Qualifications for the staff are shown in Table 1. Each N&C
employee or contractor involved with this project will be required to read this QAPP and
associated standard operating procedures (SOPs).

Figure 1: N&C Organizational Chart

Quality Assurance Project Plan: Clive Performance Assessment Model

Table 1: Roles, Responsibilities, and Training

Roles Personnel Training

Project Manager Paul Black Ph.D. Statistics

QA Officer Jim Markwiese Ph.D. Biology

Technical Lead John Tauxe Ph.D. Civil Engineer, Professional Engineer (New
Mexico), GoldSim Training

Modeler
Biologist

Mike Balshi Ph.D. Ecological Modeling
System model training

Modeler Katie Catlett Ph.D. Soil Science
GoldSim Training

Statistician Mark Fitzgerald Ph.D. Statistics

Chemist Dave Gratson M.S. Environmental Science and Engineering
Certified Environmental Analytical Chemist
GoldSim Training

Modeler Mike Gross Ph.D. Mechanical Engineering
GoldSim Training

Project planner Warren Houghteling IT Specialist

Risk and analyst Robert Lee M.S. Environmental Health

Ecologist Greg McDermott M.S. Entomology

Exposure and Dose
Assessment
Modeler

Ralph Perona M.S. Environmental Health
DABT

Statistician
Modeler

Matt Pocernich M.S. Environmental Engineering
M.S. Applied Mathematics (Statistics)

Statistician Tom Stockton Ph.D. Environmental Modeling
GoldSim Training

Hydrologist Michael Sully Ph.D. Soil Science
GoldSim Training

4.0 Project Description
The safe storage and disposal of depleted uranium (DU) waste is essential for mitigating releases
of radioactive materials and reducing exposures to humans and the environment. Currently, a
radioactive waste facility located in Clive, Utah operated by EnergySolutions is proposed to
receive and store DU waste that has been declared surplus from radiological facilities across the
nation. The Clive facility has been tasked with disposing of the DU waste in an economically
feasible manner that protects humans from future radiological releases.

To assess whether the proposed Clive facility location and containment technologies are suitable
for protection of human health, specific performance objectives must be met for land disposal of

Quality Assurance Project Plan: Clive Performance Assessment Model

radioactive waste set forth in Title 10 Code of Federal Regulations Part 61 (10 CFR 61) Subpart
C, and promulgated by the Nuclear Regulatory Commission (NRC). In order to support the
required radiological performance assessment (PA), a detailed computer model will be developed
to evaluate the doses to human receptors that would result from the disposal of DU and its
associated radioactive contaminants (collectively termed “DU waste”), and conversely to
determine how much DU waste can be safely disposed at the Clive facility.

5.0 Critical Tasks and Schedule
Critical tasks for meeting project objectives are described in Table 2 below including the
associated product and scheduled deliverable dates.

Table 2: Critical tasks for meeting project objectives, task products, and scheduled completion
dates.

Task Product Scheduled Completion
Date

Task 1. Develop a Performance Assessment Model

SubTask 1a. Attend Kick-off Meetings Meeting Attendance September 2009

SubTask 1b. Model structuring based on Features, Events and
Processes

Conceptual Site Model
Report

Preliminary GoldSim
Model

February 2010

SubTask 1c. Develop a Model Representative of a Single
Disposal Embankment Cell

Fully-functional
probabilistic GoldSim
model for a single cell

December 2010

SubTask 1d. Compare results of the initial model to the
existing modeling effort

Model comparison
report

August 2010

SubTask 1e. Perform Uncertainty and Sensitivity Analyses on
the initial model

Uncertainty and
Sensitivity Analysis
report

September 2010

SubTask 1f. Demonstrate Preliminary Model and Solicit
Feedback

Presentation and
Training

October 2010

Task 2. Develop a Complete Model Encompassing All
Candidate Disposal Cells

Complete GoldSim ES
DU Model v1.0
including QA
documentation, User
Guide, electronic
references, and
supporting information

February 2011

Quality Assurance Project Plan: Clive Performance Assessment Model

Task Product Scheduled Completion
Date

Delivered on CD or DVD
media

Task 3. Training

SubTask 3a. Train Various Audiences in Use of the Model Training sessions TBD

SubTask 3b. Provide Technical Information, Training, and
Interactions with the Utah Division of Radiation
Control and/or other Stakeholders

Technical presentations,
training sessions,
question and answer
sessions, and other
interactions as required

TBD

SubTask 3c. Assist in Technical Interactions with the Nuclear
Regulatory Commission.

Provide responses to
comments and requests
for additional
information as needed

TBD

Task 4. SQAP SQAP revisions Version 1 December
2009

Task 6. Project Management Administration,
reporting, planning,
participation in
presentations and
publications

6.0 Quality Objectives and Model Performance
Criteria

Systematic planning to identify required GoldSim model components will be accomplished
through the development of a conceptual site model (CSM) for the disposal of depleted uranium
at the Clive facility. This CSM describes the physical, chemical, and biological characteristics of
the Clive facility.

The CSM encompasses everything from the inventory of disposed wastes, the migration of
radionuclides contained in the waste through the engineered and natural systems, and the
exposure and radiation doses to hypothetical future humans. These site characteristics are used to
define variables for the quantitative PA model that is used to provide insights and understanding
of the future potential human radiation doses from the disposal of DU waste. The content of the
CSM provides the basis for selection of the significant regional and site-specific features, events

Quality Assurance Project Plan: Clive Performance Assessment Model

and processes that need to be represented mathematically in the PA model. A report describing
the CCM will be developed as part of Task 1.

As described in Section 4.0 the objective of the PA is to provide a tool for determining if specific
performance objectives will be met for land disposal of radioactive waste set forth in Title 10
Code of Federal Regulations Part 61 (10 CFR 61) Subpart C, and promulgated by the Nuclear
Regulatory Commission (NRC). The quality objective for the model is to provide results that are
consistent with the site characteristics, the waste characteristics, and the CSM. If data are
available, the demonstration of consistency will be supported by available site monitoring data
and other field investigations. The model predictions of transport of radionuclides and the
inadvertent intrusion into the disposal facility, and the sensitivity and uncertainty of the
calculated results should be comprehensive representations of the existing knowledge of the site
and the disposal facility design and operations.

7.0 Documentation and Records
Subversion version-control software will be used to maintain records of ownership and
traceability of all project-specific files and database contents. Original data are stored in version-
controlled repositories. Additions, deletions and file modifications within the repository are
tracked by the version control software, which documents the file user and the date and time of
modification. The version control software also offers a “compare between revisions” feature for
text files that denotes line-by-line changes between previous and current versions of a file. User-
entered comments are also maintained by the version control software as files are added, deleted,
or modified. Version control of records is described in more detail in the EnergySolutions
Subversion SOP in Appendix A.

Internal documentation of the GoldSim model, version change notes, change log, model
versioning, and model error reporting and resolution are described in the EnergySolutions
GoldSim Model Development SOP in Appendix B and the EnergySolutions Issue Tracker SOP in
Appendix C.

8.0 Data Acceptance Criteria
The choice of data sources depends on data availability and data application in the model. The
following hierarchy outlines different types of information and their application. The information
becomes increasingly site-specific and parameter uncertainty is generally reduced moving down
the list.

• Physical limitations on parameter ranges, used for bounding values when no other
supporting information is available. Example: Porosity must be between 0 and 1 by
definition.

• Generic information from global databases or review literature, used for bounding values
and initial estimates in the absence of site-specific information. Example: A common
value for porosity of sand is 0.3.

Quality Assurance Project Plan: Clive Performance Assessment Model

• Local information from regional or national sources, used to refine the above
distributions, but with little or no site-specific information. Example: Sandy deposits in
the region have been reported to have porosities in the range of 0.30 to 0.37, based on
drilling reports.

• Information elicited from experts regarding site-specific phenomena that cannot be
measured. Example: The likelihood of farming occurring on the site sometime within the
next 1000 years is estimated at 50% to 90%.

• Site-specific information gathered for other purposes. Example: Water well drillers
report the thickness of the regional aquifer to be 10 to 12 meters.

• Site-specific modeling and studies performed for site-specific purposes. Example: The
infiltration of water through the planned engineered cap is estimated by process modeling
to be between 14 and 22 cm/yr.

• Site-specific data gathered for specific purposes in the models. Example: The density of
Pogonomyrmex ant nests adjacent to the site is counted, and found to be 243 nests per
hectare.

The determination of data adequacy is informed by a sensitivity analysis of the model, which
identifies those parameters most significant to a given model result. Such parameters are
candidates for improved quality. As the model development cycle proceeds, sensitive parameters
are identified, and their sources are evaluated to determine the cost/benefit of reducing their
uncertainty.

9.0 Data Management and Software Configuration
The acquired data, developed statistical distributions and results generated by the GoldSim
model and the uncertainty and sensitivity analyses will be archived in a version-control
repository as described in Section 7.0 above. Configuration management for the GoldSim model
is described in the EnergySolutions GoldSim SOP in Appendix B.

10.0 Model Assessment and Response Actions
During model development assessments will be conducted using a graded approach with the
level of testing proportional to the importance of the model feature. Assessments will consist of:

• reviews of model theory

• reviews of model algorithms

• reviews of model parameters and data

• sensitivity analysis

• uncertainty analysis

Quality Assurance Project Plan: Clive Performance Assessment Model

• tests of individual model modules using alternate methods of calculation such as analytic
solutions or spreadsheet calculations

• reasonableness checks

Response actions including error reporting and resolution processes are described in the
EnergySolutions GoldSim SOP and the EnergySolutions Issue Tracker SOP.

11.0 Model Requirements Assessment
The purpose of these assessments is to confirm that the modeling process was able to produce a
model that meets project objectives. Model results will be reviewed to ensure that results are
consistent with the site characteristics, the waste characteristics, and the CSM as described in
Section 6.0. Model results will be assessed to determine that the requirements of
EnergySolutions for the use of the model have been met. Any limitations on the use of the model
results will be reported to the project manager and discussed with EnergySolutions.

Appendix A - EnergySolutions Subversion Standard Operating Procedure

 1

Neptune and Company (N&C) Internal Procedure
Confidential

General Procedure: Standard Operating
Procedure (SOP)
Contract Specific: Internal N&C product

Document No.
06245-002

Version: 01

Document Status: Final

Title: EnergySolutions Subversion SOP Author: Warren Houghteling

Revised by: N/A

Final Approval Signatures Date

Corporate Quality Assurance Officer:
Print Name: James Markwiese
Signature:

12/21/1010

Neptune and Company Project Manager
Print Name: Paul Black
Signature:

12/21/2010

Effective Date: 12/21/2010 Page 1 of 11

Date Stamp: 2/22/2011

 2

EnergySolutions Subversion SOP

Introduction

Subversion is an open source version control system. Version control is the
management of changes to documents, programs, and other information stored as
electronic files. Neptune uses subversion to manage work products and other
project information that can be stored as electronically. Subversion has two major
features that support increased productivity and better Quality Assurance:

1) Subversion allows the easy sharing of file in a way that allows all project
participants to have access to the latest version of the file. No longer is it
necessary to send emails back and forth with updates to work products, a
process which can often lead to confusion as to which document version
contains all the latest changes

2) Subversion keeps a copy of every “committed” version of the file in its
database, making it easy to go back to earlier versions of a file. No file version
is ever deleted in subversion. The progression of changes in any file can be
tracked via the comment feature, which allows the user to add a comment
describing what had changed each time they commit an edited version of a
file to the database.

Repositories

As the Subversion online manual (http://svnbook.red-bean.com/) states,
Subversion is a centralized system for sharing information. At its core is a
repository, which is a central store of data. The SVN repositories live on a central
server, SVN.neptuneinc.org. New repositories can be created on the server at any
time. To the user, a repository appears as a collection of files and directories
(although they are not actually stored that way on the SVN server).

Users access the contents of a repository by “checking out” a local copy of the
repository. This process copies files from the repository to the user’s computer,
creating a local “working copy” of the repository. The user can then make changes to
their local copy and “commit” these changes back to the repository, so they become
part of the centralized data store. To get the latest changes committed by others, the
user should periodically “update” their repository, a process which pulls down any
new changes from the server that are not yet part of the user’s working copy.

Repositories have typically been created on a per-project basis, but some have
instead been created to house all the data associated with a particular client (for
example, the EPA repository). The latter approach produces very large repositories,

http://svnbook.red-bean.com/

 3

which can make downloading the whole repository very time consuming, especially
for users outside the Los Alamos office where the server resides. However, this can
be worked around by the user checking out only the sub-folders they need from a
given repository. This will be discussed in more detail later in this document.

Accessing Repositories

To access Neptune’s subversion repositories, you will need two things:

1) a subversion user account on the server
2) a client program running on your computer which can interact with the

subversion server to allow you to check out, update, and commit files

Obtaining a Subversion Account

This should be done automatically as part of your new-employee setup; however, if
for some reason you find yourself without an account, any member of the IT team
can set you up with one. You will receive a username and a password, which need to
be submitted for most SVN transactions. Fortunately, all SVN clients provide the
opportunity to cache your identity so that you do not have to repeatedly enter your
credentials.

Subversion Clients

Windows GUI

On Windows machines, the main client we use is Tortoise SVN, which is available
from Tigris.org. Its home page is http://tortoisesvn.tigris.org/. Downloading and
installing Tortoise SVN is a straightforward process, but IT staff will always be glad
to offer assistance if needed. Tortoise works as a plugin to Windows Explorer (NOT
Internet Explorer the web browser, but the file explorer); once you have Tortoise
installed, you will see special icons next to files that are part of working copies, and
you will have access to SVN commands via right-clicking on any file or folder in
Windows Explorer.

Other clients are available – the other client that software developers use is a plugin
to the Eclipse development environment called Subclipse (also from Tigris).

http://tortoisesvn.tigris.org/

 4

Mac GUI

There are two main Mac clients currently in use at Neptune, SCplugin
(http://scplugin.tigris.org/) , which mimics some of the Tortoise functionality but
unfortunately does not have all features enabled on the latest OS version (Snow
Leopard), and svnX
(http://www.lachoseinteractive.net/en/community/subversion/svnx/), which has
a richer feature set but a very different UI concept. Both clients are useful and can
even coexist on the same machine. As is the case on Windows, plugins are also
available for various development environments (e.g. Netbeans, Eclipse).

Command Line

On Linux and other Unix-based systems (including the Mac), there is a command-
line client program called SVN. The command line client is the most flexible and
powerful way to interact with subversion, and may be needed in special situations
to address issues that the GUI clients cannot handle. In these cases, IT personnel can
lead you through the necessary steps.

Getting Started with Subversion

Your first experience with subversion will likely involve someone on your project
team telling you to check out a repository (or sub-section of a repository) so you can
examine and/or modify files. You will need the URL of the repository (or sub-
directory) to be able to check it out. All Neptune SVN URLs will begin with
http://SVN.neptuneinc.org/repos followed by the repository name. So if I wanted
to check out the entire Neptune repository (not recommended, as it is very large), I
would use the URL http://SVN.neptuneinc.org/repos/neptune.

Trunk, Branches, and Tags

Most repositories have three top-level directories called trunk, branches, and tags.
The trunk represents the main line of work in the repository – the branches and tags
folders have specialized uses, which will be discussed later (they are mainly
relevant to programmers). When someone asks you to check out the “project1”
repository, and that repository has a trunk, the URL you will want to use is
http://SVN.neptuneinc.org/repos/project1/trunk. However, the name of the
directory you will create to check the files out into should be called project1, so you
will know what repository you are working with.

http://scplugin.tigris.org/
http://www.lachoseinteractive.net/en/community/subversion/svnx/
http://svn.neptuneinc.org/repos
http://svn.neptuneinc.org/repos/neptune

 5

Checking Out

Once you have been given the URL of the repository you want to check out, you will
enter that URL into your subversion client as part of a “checkout” operation.
Depending on you client, you may need to create the containing directory first, or
the client may do it for you if you indicate a directory that does not yet exist. Either
way, the files you have requested will be copied from the SVN server to the location
you have specified. Subversion does NOT CARE where on your machine you chose to
store your files. Subversion keeps hidden “metadata” folders inside each folder of
your working copy. One of the things these metadata folders keep track of is what
URL on the server the current directory corresponds to. This means that you can
move the location of the working copy on your computer, and this will not affect
subversion at all – it still knows where to go on the server to get updates for those
files, or commit changes to those files

 If the repository is large, and especially if you are not in the Los Alamos office
where the SVN server resides, this initial checkout could take a long time. Your
client will show you a running progress display, usually listing each file that is
pulled down from the server. If the listing seems to get “stuck” on a particular file,
that probably means that the next file in the list is very large, as the files are not
listed until their download is complete. Occasionally, you will some kind of
“timeout” error message during a long checkout. In this case, it almost always works
to simply update your working copy to get the rest of the files (see the next section
for updating).

Updating

As time passes, other team members may make changes to files in the repository
you have checked out. The only way for you to see these changes to update your
working copy of the repository. Your SVN client will allow you to select any
directory or file in a working copy and request that it be updated. Usually, you will
want to pick the top-level directory, so you can get all the updates at once. As with
checking out, your client will give you a listing of files, but in this case it will only be
files that have versions newer than the one you already have in your working copy.
If nothing has changed, you will see a message confirming that your working copy is
already at the latest version, for example “at revision 258.”

Conflicts
If you have changed a file in your working copy, and someone else has changed the
same file in their working copy and committed (uploaded) their change back to the
server, you may get a conflict notification. If the file is plain text, and the changes in
the repository are in a different part of the file than the changes you made, you will
see a notification that those changes have been merged into your version of the file

 6

(there will be a G after the file name in the list of changes). However, if your text
changes conflict with the changes from the repository, or if the file is a binary file,
you will get a conflict. We will talk about resolving conflicts later in this document.

Committing

When you have made changes to one or more files and want to publish those
changes back to the repository, you need to commit them. Your SVN client will allow
you to select a file or directory and issue the commit command. The client will show
you a list of the changed files it found, and offer you the option of unselecting any
files that might have changes you are not ready to commit. It will also provide you a
space to enter a comment describing the changes made to the file(s) in question. It is
critical that a meaningful comment always be filled in. This requirement will be
discussed in more detail later in the document.

Adding New Files or Folders
If you create a new file or folder inside a directory that is part of your working copy,
it has no effect on the repository until you first add the file to the working copy and
then commit that addition. Most GUI clients allow you to combine these operations
by including new files in the list of changes when you begin the process of
committing a directory. New files will usually appear with a question mark next to
them. If you check the box next to a new file, you are telling the client program to
first add the file to the containing directory and then include that addition in the
final commit operation. Some GUIs will have a check box that allows you to toggle
whether or not new files are shown in the commit list.

Why Commits Can Fail

The main reason that a commit will fail is if one of the files to be committed is not
the latest version from the repository. Subversion will not allow you to potentially
overwrite someone else’s changes. For example, you cannot commit a file that is
based on an earlier version than the latest version from the repository. When a
commit fails for this reason, the only thing to do is to update. If the file is a text file,
you may find that the changes in the repository are simply merged into your file.
However, the most likely scenario is that you will get a conflict, which you will then
have to resolve (see Resolving Conflicts later in this document).

Practically speaking, this means that just before you begin editing a file, you need to
do an update to make sure you have the latest version. Also, if the file is binary (e.g.
a MS Word document), you will want to let other members of your team know that
you are editing the document, so that they won’t start editing in parallel. Of course,
for large documents, there are strategies that allow for editing files in parallel when

 7

you know that your changes will not conflict with your colleagues’ (for example
when two people are editing different sections of the document). These strategies
will be discussed later under the Workflow section.

Reverting Changes

Sometimes you may be working on a file and wish to discard all your changes and
return to the base revision from the repository. This might happen if you were to
realize that you had been modifying the wrong file, or for a variety of other reasons.
The revert command will discard all local changes and restore your working copy
with a “pristine” version of the last version of the file or files you checked out.

Sometimes reverting is the best way to resolve a conflict. You can always save your
version of the changed file to a different location and then revert the conflicted file.
This will give you the latest file from the repository, and allow you to examine that
file and see how it differs from yours, so you can incorporate your changes into the
new version.

Subversion Workflow

Repository Creation

A repository can be created at any time by a member of the IT staff. Repository
names must conform to the following requirements (not that not all existing
repositories conform):

- all lower case
- no spaces – use underscores instead
- alphanumeric characters only – no special characters

Repositories are created on an as-needed basis. Once again, communication is key –
team members should decide if their project needs a new repository or if it best fits
inside an existing repository.

The structure of the files within the repository is also a team decision. Several
templates have been used on different types of projects. Specific template examples
may be made available in the future to use as starting points for new projects.

 8

Working with Existing Repositories

You always have the option to check out an entire repository, or just a subsection of
a repository. The only difference between the two is the URL that is passed to the
checkout command. To check out an entire repository, your URL will look like this:
 http://SVN.neptuneinc.org/repos/repository_name/trunk
or, in the case of a repository with no trunk,
 http://SVN.neptuneinc.org/repos/repository_name
If you only want to check out a sub-section of the repository, you simply include the
path to the sub-section in your URL. Here is an example of how to check out just the
QA folder (containing the new company QA plan documents) from the Neptune
repository:
 http://SVN.neptuneinc.org/repos/neptune/trunk/QA
This way you only get a folder with three documents rater than an entire repository
with many Gigabytes of data.

Repository Browsing
Many of the GUI clients include a feature that allows you to “browse” the repository
on the server. By entering the base URL of the repository (for example,
http://SVN.neptuneinc.org/repos/neptune) in the browser window, you can view
the structure of the repository as it is on the server without having to download
anything. This is a great way to figure out what you might need to check out for a
given purpose. For example, the browser will show you that under the trunk of the
Neptune repository there is a Business Development folder, which in turn contains a
proposals folder. If you are just interested in seeing the proposal work done for
DOD, you can just check out the DOD folder from inside the proposals folder. Most
repository browser GUIs allow you to select a sub-folder from within a repository
and ask to check it out. At worst, you can use the browser view to see how to build
the URL you will need to check out the sub-folder you are interested in.

One thing that a repository browser GUI will NOT do is allow you to see all the
different repositories on the server. To see a list of all repositories, visit to the
password-protected web page at http://repositories.neptuneinc.org/index.php. You
can get the username and password from one of the IT staff.

Making Changes

There are three kinds of changes you can make to a repository:

1) Modify existing files in a repository
2) Add new files to a repository
3) Reorganize the structure of a repository

http://svn.neptuneinc.org/repos/repository_name/trunk
http://svn.neptuneinc.org/repos/repository_name
http://svn.neptuneinc.org/repos/neptune/trunk/QA
http://svn.neptuneinc.org/repos/neptune
http://repositories.neptuneinc.org/index.php

 9

Modifying Existing Files
As noted earlier, always do an update before you begin modifying files, to make sure
that you are working on the latest versions. Also, especially in the case of binary
files, notify other team members that you will be modifying the file(s).

Using Locks to Enforce Serial Editing of Binary Documents
The best way to avoid conflicts when editing files is to use subversion’s locking
feature. Both svnX on the Mac and Tortoise on Windows give you access to this
feature. Locking a file is simple. First be sure you have the latest version of the file
by running an update. Then use the GUI (or command line) to invoke the lock
command. (you will get an error message if a more recent version of the file exists in
the repository). Once a file is locked, no one else can commit changes to that file –
they will receive an error when trying to commit, telling them the file is locked and
the name of the user who has the lock.

Therefore, when editing a binary file, one should ALWAYS lock the file first. If
someone else already has the file locked, you will get an error with the lock owner’s
username, and you know that you need to wait for that team member to finish his or
her edits before you can work on the file. If you successfully gain the lock, you can be
sure that no one will commit a new version that will then cause a conflict when you
try to commit yours. When you commit your version of the file, the lock is
automatically released.

In case someone locks a file and then forgets about it and goes on vacation, locks can
be broken (you may need help from an IT staff member to do this). Locks are not a
strict enforcement mechanism – rather they are a way to enhance team
communication.

Editing Binary Documents in Parallel
In cases of large binary documents with many sections, team members may work on
a file in parallel, with the understanding that the different team members are
working on different sections of the file. When one team member is ready to
commit their changes, they may do so, and the other member(s) then need to update
their versions. Before doing so, they should save their versions with changes to a
location outside of their working copy, or save their changes to a new filename,
perhaps with their initials appended (for example, save Report1.docx as
Report1_WH.docx. This way, before the other members update, they can revert their
changes in the repository to avoid a conflict when they updated to get their
colleague’s changes (the revert operation can also happen after the conflict – this
will discard all local changes and leave the working copy with the latest version
from the repository). The next team member to finish their edits can then copy just
their section into the new version of the document and commit those changes. As
discussed in the previous section, locks can be used to enforce the order in which

 10

changes are made to the document. Needless to say, this process requires good
communication among team members to make sure that no ones changes are
unintentionally overwritten.

In all cases it is REQUIRED that a comment be entered which summarizes the
changes to the file as part of the commit process. This is essential to leveraging the
full power of Subversion to provide support for Quality Assurance by providing a
clear trail of comments explaining how documents evolve over time. If the project is
using Bugzilla to track tasks, the comment should include references to Bugzilla task
numbers where appropriate (for more details see the Bugzilla SOP).

Adding New Files
Generally, there are two kinds of new files we add to a repository. The first are new
Neptune-created files, which may become work products or simply supporting
project information. In these cases, it is REQUIRED to enter a comment describing
the purpose of the file and perhaps its initial content.

The second type of files we add to repositories are files received from outside
sources – reports, data, communications from clients, meeting minutes, etc. In these
cases it is CRUCIAL that the comment contain as much detail as possible about the
provenance of the file. Being able to track down exactly where we got the file and
from whom is crucial to the QA process. So the comment “adding new Eco data” is
fairly useless, whereas “adding new mammal field data received from Brett Tiller via
email on 7/21/2008” gives us solid backward traceability to the source of the data.

Reorganizing the Structure of a Repository
This operation is the one most likely to lead to confusion and errors if it is done
incorrectly. As mentioned earlier in the document, each directory in a working copy
keeps hidden metadata about how it corresponds to the data in the repository on
the server. This means that moving directories around on your computer has NO
EFFECT on the structure of the repository on the server. You must move a special
“SVN move” command to let the working copy know that you want to modify the
directories in the working copy by adding or removing files from the (a move
operation will delete files from one directory and add them to another). The actual
effect on the repository will not take place until you commit your changes which
include the moved files.

Similarly, deleting files from your working copy will have NO EFFECT on those files
in the repository. You must use a special “SVN delete” command to let the directory
containing those files that they are scheduled for deletion. The actual deletion of the
files will not take place until you commit your changes that include the SVN deletes.

 11

It is important to realize that deleting a file does NOT delete the file from the
repository. It simply deletes the file from the latest version of the repository. It is
always possible to go back to earlier versions of the repository to “resurrect”
deleted files.

Finally, because deleting files from your hard disk does not affect the repository, this
can be a good last-ditch solution for solving SVN problems. Occasionally, the
metadata in some part of a working copy may become corrupted, leading to error
messages when you try to update the repository or delete files. You can always
delete the directory to which the error message refers and then run an update on
the containing directory to get a fresh copy of the data pulled down from the
repository. Of course, if you have changed files in the problem directory or any of its
sub-directories, you should first copy the changed files to a location outside your
working copy before deleting the problem directory. Then once you have done the
update to get a clean copy of the directory, you can copy your changed files back into
their appropriate locations in the working copy, and they will once again show up as
changed files that you can commit.

Appendix B - EnergySolutions GoldSim Model Development Standard
Operating Procedure

Neptune and Company (N&C) Internal Procedure
Confidential

General Procedure: Standard Operating
Procedure (SOP)
Contract Specific: Internal N&C product

Document No.
06245-003

Version: 01

Document Status: Final

Title: EnergySolutions GoldSim Model Development
SOP

Author: John Tauxe

Revised by: N/A

Final Approval Signatures Date

Corporate Quality Assurance Officer:
Print Name: James Markwiese
Signature:

Neptune and Company Project Manager:
Print Name: Paul Black
Signature:

Effective Date: 12/21/2010

Date Stamp: 2/22/2011

 EnergySolutions GoldSim Model
Development SOP

22 February 2011

Prepared by

Neptune and Company, Inc.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP ii

1. Title: GoldSim Model Development SOP

2. File Name: GoldSim Model Development SOP.docx

3. Describe Use: This document describes the standard operating procedure for the
development of GoldSim Models. Some language is specific to model development
for Performance Assessment-type models.

 Printed Name Signature Date

4. Originator John Tauxe 15 Dec 2009

5. Reviewer Warren Houghteling 21 Dec 2009

6. Remarks:

Revised to generalize to all PA-type GoldSim model development. - 16 Jun 09 JT
Minor revisions and clarifications. - 15 Dec 09 JT
Review and additional modifications for EnergySolutions work. - 29 Dec 09 JT
Revised to SOP content – 2 Feb 2011 MS

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP iii

CONTENTS

FIGURES .. v

1.0 Introduction ... 1

2.0 Modeling Lifecycle ... 1

2.1 Conceptual Model Development .. 1

2.2 Model Requirements Evaluation .. 1

2.3 Verification of Software Installation .. 3

2.4 GoldSim Model Development ... 3

2.5 Model Data Inputs .. 3

2.5.1 Input Data Selection .. 3

2.5.2 Input Data Placeholders .. 3

2.5.3 Data Acceptance Criteria .. 4

2.5.4 Records of Parameter Values .. 5

2.5.5 The Parameter List .. 5

2.5.6 Check Prints .. 5

2.6 Model Assessment .. 6

2.6.1 Validation/Verification .. 6

2.6.2 Benchmarking ... 6

2.6.3 Reasonableness Checking ... 6

2.7 Model Review .. 7

3.0 Model Documentation .. 7

3.1 Documentation Components .. 7

3.2 Model Element Note Panes .. 8

4.0 Model Configuration Management ... 8

4.1 Model Custody ... 8

4.1.1 Experimental Module Development ... 9

4.1.2 Criteria for Making Changes .. 9

4.2 Documentation of Changes .. 10

4.2.1 Version Change Notes ... 10

4.2.2 The Change Log ...11

4.3 GoldSim Versioning ... 12

4.3.1 Model Version Numbers ... 12

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP iv

4.3.1.1 Incrementing the version number .. 14

4.3.1.2 Creating a versioning report .. 14

4.4 Model Testing ... 14

4.5 Model Backup .. 15

4.6 Error Reporting and Resolution ... 15

4.6.1 Reporting Error Candidates .. 15

4.6.2 Assessing Error Candidates .. 15

4.6.3 Resolving Errors ... 16

4.6.4 Error Resolution Verification .. 16

4.6.5 Error Impact Assessment .. 16

4.7 Model Distribution ... 16

5.0 References ... 17

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP v

FIGURES

Figure 1: Model development work process flow diagram. .. 2

Figure 2: GoldSim provides for annotation regarding any change in an element's definition
through the Version Change Note. .. 11

Figure 3: The model’s Change Log can be maintained using a note pane or a formatted text box. 12

Figure 4: GoldSim has an internal version manager. ... 13

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 1

1.0 Introduction

This standard operating procedure (SOP) describes the development of GoldSim-based computer
models. These models are used to perform contaminant transport and dose assessment
calculations as the computational basis for radiological Performance Assessments (PA). They are
developed using the GoldSim™ systems analysis software, developed by the GoldSim
Technology Group (GTG), as a principal platform, commonly in conjunction with various
supporting computer programs and data sources. Throughout this document, the term Quality
Assurance (QA) refers to a program for the systematic monitoring and evaluation of the various
aspects of a GoldSim model development to ensure that standards of quality are being met.

2.0 Modeling Lifecycle

GoldSim model development follows a structured process or lifecycle that requires a graded
approach to quality assurance at each phase. The lifecycle for GoldSim model development is
described below and correlates with the work process shown in Figure 1.

2.1 Conceptual Model Development

Model development begins with the development of a Conceptual Site Model (CSM). The
conceptual site model identifies important features and processes of the system being modeled
that are consistent with the existing data. While the process of developing the CSM does not fall
under the scope of this SOP, it is mentioned here because it forms the basis for the GoldSim
model design.

The CSM is documented in a Conceptual Site Model document, which explains and provides
justification for the mathematical approaches for modeling geological, hydrogeological,
contaminant fate and transport, and other component process of the overall model. Existing data
and literature and expert opinion are used to support the modeling approach described by the
CSM.

2.2 Model Requirements Evaluation

The CSM provides a description of the attributes and capabilities of the software required to
meet the project objectives. An evaluation is conducted to verify that the GoldSim modeling
platform is capable of providing these required attributes and capabilities.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 2

Figure 1: Model development work process flow diagram.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 3

2.3 Verification of Software Installation

The GoldSim software is installed and registered as described in the GoldSim User's Guide
(GTG 2010a). Following the installation and registration the user runs the example model
“FirstModel.gsm” located in the “General Examples” directory and verifies that the output
obtained matches the chart shown on page 26 of the User's Guide (GTG 2010a).

The GoldSim User's Guide (GTG 2010a) and the GoldSim Contaminant Transport Module
User's Guide (GTG 2020b) provide complete descriptions of the features and capabilities of
GoldSim and the Contaminant Transport Module.

2.4 GoldSim Model Development

To begin model development individual modelers work in parallel to model specific
sub-processes described in the CSM. For example, existing mathematical models are translated
into specific algorithms to be used in the modeling process. GoldSim offers a level of model
structure that can closely resemble a conceptual model, so the structural implementation of the
GoldSim model will follow the conceptual model developed by the project team. As the
different components of the model are developed in GoldSim, they are integrated to form a
coherent model of the overall process being studied. GoldSim's object-oriented structure
facilitates this process, often allowing independently developed sub-modules to be copied and
pasted into the main model. GoldSim's “self-documenting”features allow the graphical user
interface (GUI) design to incorporate documentation of modeling concepts and parameter
derivation, so that it is relatively easy to crosswalk between individual GoldSim pages and
sections of the CSM document.

2.5 Model Data Inputs

2.5.1 Input Data Selection

The development of appropriate definitions of input parameters is guided by model sensitivity
analyses, which identify those parameters most important in determining the model results. In
some cases, the definition of an input value matters little to the results and in these cases less
effort is expended in developing distributions. Sensitive parameters, however, warrant a closer
investigation, and their input distributions are devised with great care where possible. All
parameters in the model are based on some sort of information source, be it a “literature value”,
the result of a site-specific data collection campaign, or the result of expert professional
judgment.

2.5.2 Input Data Placeholders

On occasion, a modeling element must be added to the model in order to proceed with
construction, but no value has yet been developed. In this case, an ad hoc placeholder value is
chosen so that model development may continue, and the parameter is noted as a placeholder.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 4

Before the model can be relied upon for any purpose, however, all such placeholder values must
be replaced with suitably-derived and documented values.

2.5.3 Data Acceptance Criteria

The sources of input data for the model are various, and the quality of the source is a
compromise between model sensitivity (identifying the need for high-quality data), availability,
appropriateness, and the ability (budget and/or practicality) to generate data of sufficient quality.
Input parameters that have a strong influence on the model results as determined by sensitivity
analyses are given higher priority than those with little influence.

The choice of data sources depends on the availability and application of the data in the model.
The following hierarchy outlines different types of information and their application. The
information becomes increasingly site-specific and parameter uncertainty is generally reduced
moving down the list.

• Physical limitations on parameter ranges, used for bounding values when no other
supporting information is available. Example: Porosity must be between 0 and 1 by
definition.

• Generic information from global databases or review literature, used for bounding values
and initial estimates in the absence of site-specific information. Example: A common
value for porosity of sand is 0.3.

• Local information from regional or national sources, used to refine the above
distributions, but with little or no site-specific information. Example: Sandy deposits in
the region have been reported to have porosities in the range of 0.30 to 0.37, based on
drilling reports.

• Information elicited from experts regarding site-specific phenomena that cannot be
measured. Example: The likelihood of farming occurring on the site some time within the
next 1000 years is estimated at 50% to 90%.

• Site-specific information gathered for other purposes. Example: Water well drillers
report the thickness of the regional aquifer to be 10 to 12 meters.

• Site-specific modeling and studies performed for site-specific purposes. Example: The
infiltration of water through the planned engineered cap is estimated by process modeling
to be between 14 and 22 cm/yr.

• Site-specific data gathered for specific purposes in the models. Example: The density of
Pogonomyrmex ant nests adjacent to the site is counted, and found to be 243 nests per
hectare.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 5

The determination of data adequacy is informed by a sensitivity analysis of the model, which
identifies those parameters most significant to a given model result. Such parameters are
candidates for additional measurements or more deliberate estimation. As the model
development cycle proceeds, sensitive parameters are identified and their sources are evaluated
to determine the cost/benefit of reducing their uncertainty.

2.5.4 Records of Parameter Values

One limitation of the GoldSim platform is that there is no straightforward way to examine all the
values of inputs (data and stochastic elements) in one place. The user must search the model and
open (or “mouse-over”) each input element individually in order to see its value. In order to
overcome this inconvenience, all the parameter inputs are stored external to the model, in the
Parameter List documents.

2.5.5 The Parameter List

The Parameter List is a complete list of the input parameters for the model, and may consist of a
text document, a workbook of spreadsheets, a database, or a combination of these, depending on
the changing capabilities of the GoldSim modeling platform. Each parameter is listed in only one
place, so that there is no ambiguity about the proper value of a parameter. Accompanying the
listing of the parameter value in the Parameter List is a reference to its origin, which may be in a
white paper or literature reference. Any change to a parameter is made to the Parameter List first,
and then the change is made to the model. The value in the Parameter List is cross-checked to its
source via a check print (see below), and the value in the model is then changed, noted in the
Version Change Note for the modified element, and in the Change Log.

2.5.6 Check Prints

Whenever information (e.g. a parameter distribution) is transferred from one record to another
(e.g. from a site document to the Parameter List) a QA Check Print process is invoked. This
process is intended to positively and unambiguously document the source of information for
each model input parameter or distribution. Since GoldSim is not capable of printing out a list of
all the parameters that exist in the model, a separate document—the Parameter List—is
maintained in exact concordance with the model at all times.

The flow of information is from primary sources (field data, literature, expert elicitations, etc.)
to white papers that develop the input distributions (this step may not apply to all cases), to the
Parameter List to the GoldSim model. QA check prints are maintained in all but the final step—
transferring input values to the model. The check print process consists of obtaining paper copies
of the data source and its destination, such as a paper from the literature and the Parameter List,
for example. A comment field in the Parameter List (either a column in a table, a comment
attached to a spreadsheet cell, or other location unambiguously associated with the data)
identifies the value’s origin. A paper copy of that page or pages of the Parameter List is stapled
to a paper copy of the data source (which may be simply the page from the identified source),
and the QA reviewer annotates each page. Typically, a yellow highlighter is used to indicate each

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 6

positively-checked value, and a red pen identifies any value that does not match. After checking
each value against its source, the check print is documented with the date and the signature of the
checker. Errors discovered in the process are noted, the errors are corrected in the destination
document, and the values are rechecked with a subsequent check print, which is stapled to the
original. This process is repeated until the check prints can document that information transfers
are error-free. Check prints are stored as hard copy at N&C.

The final step of information transfer—from the Parameter Document to the GoldSim model—
does not lend itself to check printing. However, traceability of parameter information can be
maintained using GoldSim's internal QA tools, such as Note Panes and Version Change Notes
discussed in Sections 3.0 and 4.0.

2.6 Model Assessment

Assessment of the proper operation of the Model is done on two levels. The overall model, as
represented in the results, is subjected to benchmarking with process model results if a process
model is available, and is compared to previous versions of the Model to assure that incremental
changes are in line with those expected from modifications to the Model. On a submodel scale,
particular parts of the Model may be assessed independently.

2.6.1 Validation/Verification

Many computer models that attempt to predict the outcomes of processes and events can be
validated (verified) with measurable results. Due to the nature of performance assessments,
which attempt to estimate concentrations and fluxes of materials in environmental media and the
possible doses resulting from those materials far into the future, the results are not amenable to
this validation. It is not possible to “test” the model to see if it has done a good job of predicting
the dose to a hypothetical individual 10,000 years from now. The methods listed below, however,
are used to demonstrate that reasonable efforts have been taken to ensure that the models are
valid.

2.6.2 Benchmarking

Benchmarking consists of reproducing the deterministic results of the process model calculations
using an established process model and GoldSim. This “benchmarking” is a fundamental high-
level corroboration of the model implementation and calculations. Agreement between the two
models serves to build confidence in the validity of the GoldSim model.

2.6.3 Reasonableness Checking

A model can incorporate several tools for checking the reasonableness of certain inputs and
results. Examples follow:

• Intermediate results are provided where they are useful for checking calculations.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 7

• Mass balance checks demonstrate that the mass of materials (soil, water, air) and
radionuclides is preserved. This is a fundamental requirement of physical environmental
models.

• To check the reasonableness of the results of a particular algorithm, the modeler may set
up equation(s) both as an element in GoldSim and also using another tool, for example a
Microsoft Excel Spreadsheet. This allows the modeler to compare results using two
different calculation methods to provide a higher level of confidence that the algorithm
has been implemented correctly in the GoldSim environment.

2.7 Model Review

Model development is subject to review by a modeler different from the one who did the original
model building. As parts of the model are revised, with changes in parameters, expressions, or
other functional elements, or model structure, these changes are reviewed for accuracy and
completeness. Any accompanying text on the model pages is also reviewed for clarity and
accuracy. The modeler making the changes identifies which parts of the model are subject to
review, and another N&C GoldSim modeler examines these in detail, providing review
comments to the originating modeler. The entire model is subjected to review before release to
the client (see Section 4.7).

3.0 Model Documentation

3.1 Documentation Components

The Model is documented both internally and externally. Internal documentation includes the
Change Log, Version Change Notes, modeling element Note Panes, and GoldSim's versioning
capability. External documentation includes white papers, check prints, and a Parameter List.
White papers document the development of specific algorithms and other inputs to the GoldSim
model and are intended to explain and justify the approach taken.

A typical page in the model consists of model elements and explanatory text. Each page
represents a modeling concept, and the model is logically divided into parts that will fit onto
pages. Text at the top of each page explains the function of the page, and text juxtaposed with the
model elements explains the function of the element, and provides information about its source.
Each element also has a description field that is used for a short descriptive identifier.

The influence of one model element on another can be easily traced through the model using the
“Show All Links” function attached to the triangle-shaped arrows on each side of the element
graphic. The left triangle, pointing into the element, shows the other elements referenced by the
current one, and the right triangle, pointing out of the element, shows the other elements that are
dependent on it. By following these links, the complete interdependency of elements can be

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 8

traced through the model. In addition to descriptive text on the page, illustrations made with
native drawing tools can be added to better communicate modeling concepts.

3.2 Model Element Note Panes

Associated with each GoldSim modeling element is the optional Note Pane feature. If an element
has a note, it is identified by an underlined element name. Note panes have a dual purpose in the
model. They are used for general information, describing the purpose of a container or element.
They also serve the QA process, as a convenient place to make notes about the source of
information or the status of QA review. While most of the note pane is free-format, the
QA-related notes are to include a date (which can be cross-indexed to a version number using the
Change Log, described below), the name of the person making the note, and a description about
the nature of the QA check. For example, a QA note for an entire container might read:

1 Apr 05 JT QA for this container completed
13 Apr 05 JT QA updated with cross-check of water tortuosity exponent

parameter values
and one for an individual element:

13 Aug 04 JT Verified source of these data: Each value was checked against the
15th edition of the Chart of the Nuclides (General Electric Co. and
Knolls Atomic Power Laboratory, 1996), wall chart version.

28 Sep 04 JT Updated and verified source of these data: Each value was
checked against the 16th edition of the Chart of the Nuclides
(General Electric Co. and Knolls Atomic Power Laboratory, 1996),
booklet version.

If an element is actually changed in the process of a QA review (or for any other reason), such
change is noted in the Version Change Note associated with that element.

4.0 Model Configuration Management

Managing the model configuration through its various versions is critical to the production of a
usable modeling product that meets client requirements. The following sections discuss various
topics relevant to model modification and control.

4.1 Model Custody

During model development, the baseline model is tracked by the lead modeler. In the event that
another modeler needs to have custody of the model for development purposes, the custody will
be passed to that modeler and returned when the work is finished. The current custodian is
always known, and is recorded on the topmost page of the model (except in released versions).

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 9

Modelers make use of the internal GoldSim versioning and Change Log in order to document
changes made to the model.

A GoldSim model differs from many other software development projects in that it exists in a
single binary file (with the “.gsm” extension). There are no separate files for subroutines as in a
more low-level programming language like C, FORTRAN, or even Java. Therefore, the model
cannot be edited by more than a single person at a time. At any given time, there is a single
“main” model file. The custody of the main model must be explicitly passed from the lead
modeler to another, and the custody is always known by the lead modeler, who is also the default
custodian. The lead modeler may assign custody to another for a particular modeling task, but
will resume custody when that task is completed. Upon return of custody, the returned model is
inspected and one of two paths is chosen: 1) The returned model is maintained as the baseline
model, or 2) the baseline model is modified appropriately to incorporate changes made in the
returned model, and the modified baseline model is retained as the new baseline model. The
baseline model resides on the custodian’s computer, and is backed up by several methods;
including off-site media (see Section 4.5).

4.1.1 Experimental Module Development

On occasion, model development requires some experimentation that may not be desirable in the
main model. In such cases, a copy of the main model is made and given a unique file name in
order to keep it distinct from the main model. This “branch copy” is used for module
development and prototyping of modeling methods. Once the prototype of a specific module is
complete, tested, and accepted, the new model parts are re-integrated into the main model, either
by copying model containers and elements from the branch copy into the main model (the
preferred method), or by re-entering elements directly into the main model in cases where
GoldSim will not allow copying between model files. Either way, the additions and/or changes to
the main model are cross checked for accuracy (by a modeler other than the one implementing
the change), and the modifications are noted in the Change Log (see Section 4.2.211). At all
times, however, there is only one main model file.

4.1.2 Criteria for Making Changes

Changes to the model occur at different levels. Minor changes to internal documentation
language, including clarifications of text and correction of typographical errors, are made as they
are identified, and without formal documentation. Changes involving any type of data input or
calculation that could potentially affect the modeling results are documented in the Change Log.

A change to an input parameter (e.g. a distribution) may be precipitated by the following:

• QA review, in which model parameters are found to not match their values as
documented outside the model. In such a case, the value in the model would be
determined to be in error.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 10

• A decision by a subject matter expert (SME), generally in consultation with other
project team members, that a value should be changed for some technical reason, such
as the availability of new data on which a distribution is based. This would be
considered an update, and the change would cascade through the proper sequence, from
an update to the data set, through development of an updated distribution, updating of
the documentation in a white paper (if applicable) and in the Parameter List and finally
an update to the model itself, with an accompanying entry in the Change Log and in the
parameter element’s Version Change Note (see Section 4.2.1. Each step in the change
sequence is reviewed by an individual other than the person implementing the change.

• Major changes to the model, such as changing the species list, adding a contaminant
transport process, a waste configuration, or an exposure scenario, are discussed and
planned by Team SMEs.

4.2 Documentation of Changes

The documentation of changes made to the model is done at a level appropriate to the changes. If
individual parameters are modified or added, this is documented with a note provided in the
model element’s Version Change Note, referencing the nature of the change, who made it, and
date of the change. The name of the changed element is noted in the Change Log, along with the
model version number, date of the change, the name of the person executing the change, and the
name of the reviewer of the change process. Such changes may also be noted in the element's
Note Pane or that of its container.

4.2.1 Version Change Notes

Version Change Notes (Figure 2) are automatically attached by GoldSim to any model element
that has been modified, and are used to store information about changes in any particular
element. GoldSim keeps a versioning database within the Model, consisting of a list of all
changes to the model between version-stamps, and the text supplied in the Version Change
Notes. At any time, GoldSim can generate a report of changes made between versions. Once a
model version number has been incremented, all Version Change Notes are “reset” and a new set
begins for that version. Any information that is to be maintained through versions for viewing by
users or reviewers, such as QA reviews, is kept in the Note Panes associated with model
elements or containers. Any time an element is edited, a log entry is generated internally by
GoldSim documenting the event. Note that this happens even if nothing is actually changed in
the element when the “OK” button is chosen in the dialog. Use of the “Cancel” button does not
signal a change.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 11

Figure 2: GoldSim provides for annotation regarding any change in an element's definition
through the Version Change Note.

4.2.2 The Change Log

Neptune and Company GoldSim Models have a Change Log, which is stored in the note pane of
the ChangeLog element as shown in Figure 3. This log is maintained by the modelers, and
documents when a change was made, who made it, the model version number, and descriptive
details. Modifications that could potentially change modeling results are noted to the level of the
element changed, with more detail included in the element’s Version Change Note or Note Pane.
Modifications to explanatory text and changes to diagrams and other supporting material are
noted in broad terms, such as “Modified figures depicting waste cell geometries.” Typographical
corrections are generally not noted.

All of these documentation techniques are used in model development. If a change was made to
the model, or if part of the model was reviewed, this will be noted in the Change Log. A note
regarding the QA review (and details, if necessary) will be made in the element's note pane or in
its container's note pane. The container's note pane is appropriate if there are many similar
elements in the container. If a change is made to an element, either from a QA review or for
another reason, GoldSim will automatically provide the element with a Version Change Note,
which is used for recording the change.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 12

Figure 3: The model’s Change Log can be maintained using a note pane or a formatted text box.

4.3 GoldSim Versioning

Introduced specifically as a model QA feature, GoldSim has model-level and element-level
versioning built in to the Version Manager.

4.3.1 Model Version Numbers

At the model level, illustrated in Figure 4, version numbers are incremented at the modeler’s
discretion. The model version number is incremented as described below. GoldSim keeps track
of changes made to the model in any given version, and can generate a report of changes made.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 13

Figure 4: GoldSim's Version Manager.

Neptune GoldSim models use versioning at two levels: Release versions and development
versions. Major revisions to the model, resulting in planned CD releases, generally proceed in
increments of X.Y, with a change in X signifying a more significant model evolution than a
change in Y. The assignment of these values is subjective, and may be decided upon in
coordination with the client.

Model development uses GoldSim’s minor version definition, which increments the Y in the
three digits following the decimal point. For example, development following the release of
version 2.1 starts with version 2.101. After making some changes to the model, a modeler
decides to preserve the incremental version. At this point, the version number is incremented to
2.102 and the work proceeds, with 2.101 being archived.

Day-to-day and hour-to-hour development versions are noted with letters appended to the
version number, such as 2.010a, 2.010b, etc. This is done so that during the process of editing the
model, any change can be easily undone. When a specific modeling task is accomplished, the
model is saved with the next letter in the sequence. As the changes are tested and accepted, the
letter suffixes are dropped, and these intermediate versions are generally not archived. If a
problem is found during testing of daily builds, or if the model file becomes corrupted, then the
modeler can easily revert to a previously saved version of the model file and rebuild the part that
caused the problem. This is preferable to attempting to “undo” the work, which takes time, can
be prone to error, and clutters the internal versioning record.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 14

4.3.1.1 Incrementing the version number

The following insert illustrates the documentation of incrementing development versions, as
recorded in the Change Log:

1) Make a final entry in the Change Log under version 1.034 that you are incrementing the version
number (see Figure 3):
29 Jun 02 1.034 JJ Versioning counter updated to 1.034, and model saved.

2) Immediately change the internal versioning to 1.034 using “Model | Versioning...” (see Figure 4)

3) Save the model as "name v1.034.gsm", (any name plus the version number) overwriting all previous
versions of that name.

4) Change the file attributes to “read only” so that the model file will not be inadvertently overwritten.

5) Change the front page and the Change Log entries to 1.035.
29 Jun 02 1.035 JJ Begin work on v1.035.

6) Save the model as "name v1.035a.gsm" (or similar)

7) Begin work on version 1.035, starting at intermediate development version 1.035a.

8) After developing using intermediates 1.035a, 1.035b, 1.035c, etc., determine when to save the model as
1.035, and return to step 1) using the new version number.

4.3.1.2 Creating a versioning report

A report can be generated from GoldSim (using the “Generate Report...” button shown in Figure
4), listing all changes to the model for a particular version. The report is a text file with global
changes as well as changes to individual elements, including the text from the Version Change
Notes.

4.4 Model Testing

Any time a change is made to the model calculations that could change the results; the effects of
the change are assessed. Model testing is relatively easy using GoldSim, since the results of any
element in the model can be examined through a time series or final value. This enables
straightforward parallel calculations to be done in order to verify correct and consistent
operation. The modeling environment also allows the simple creation of temporary elements to
perform calculations parallel to any others in the model.

Model testing is most readily done on discrete parts of the model, where results of a small
number of straightforward calculations can be examined. Confirmation of discrete parts of the
model are done by constructing a test model in GoldSim that is focused in its analysis. Ideally,
this test model is excised directly from the main model, so that all relationships and definitions

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 15

are preserved. For example, to verify that GoldSim is performing diffusion calculations as
expected, a simple GoldSim model can be constructed to examine the diffusion of materials
between various media in two cells, and the results can be compared to an analytical solution to
the diffusion equation. Calculations verified in the test model give confidence in the correct
operation in the model.

4.5 Model Backup

Preservation of electronic model files is paramount in any software development project. Several
redundant methods are employed for backup of the GoldSim model files and all other files and
documentation. Foremost are project files maintained on an N&C server, which are backed up
daily on a separate hard drive. Incremental versions of the model are likewise backed up locally
and in addition to this, the lead modeler keeps a copy on his/her computer, and backs that copy
up to a N&C server. Off-site backups are also maintained.

4.6 Error Reporting and Resolution

As errors are discovered, they must be identified, reported, and resolved. This section discusses
the handling of errors in the development of a model. Formal tracking of errors, bugs, and other
issues will be done using an issue-tracking system maintained by the QA manager and lead
modeler.

4.6.1 Reporting Error Candidates

Errors such as typographical errors in supporting text are not considered in this process. Errors
considered for this process include errors in parameter data entry or GoldSim programming. If
an error is suspected, it is to be reported to the lead modeler along with any supporting
information. It is the responsibility of the lead modeler to evaluate the error candidate and see
that the issue is resolved.

Data entry errors may be discovered in input elements (Data or Stochastic GoldSim model
elements). These are also brought to the attention of the lead modeler. These or any other
modeling issues are to be entered into the issue-tracking system.

4.6.2 Assessing Error Candidates

Once an error candidate has been brought to the attention of the lead modeler via the
issue-tracking system an assessment must be made to determine if the candidate is in fact an
error. This is usually a simple process, involving examining a mathematical expression or a piece
of entered data. Real errors are subject to resolution. False errors are commonly dismissed,
noting the resolution in the issue-tracking system. If, however, the problem was due to some
other cause, such as an ambiguity in documentation, the causes of the identification of a false
error may require attention.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 16

4.6.3 Resolving Errors

Errors, once discovered and confirmed, are usually easily remedied. Like other changes to the
model, fixing an error is documented at least in Version Change Notes and the Change Log.
Resolution is also noted in the issue-tracking system.

4.6.4 Error Resolution Verification

Checking the error resolution may be as simple as cross-checking an input value with the value
in the Parameters List to ensure it is correct. Alternatively, a modification to an expression may
involve an independent check of the calculation, using a spreadsheet, calculator, or a separate
GoldSim model.

4.6.5 Error Impact Assessment

Each resolved error is assessed regarding its potential effect on the results. If the effect is
anything more than negligible, its discovery and resolution are reported to the project
participants via email. Similarly, if the error could have had an effect on the results of previous
versions of the model, this is also reported.

4.7 Model Distribution

GoldSim models, like other computer model software, are open to modification. This is a benefit
for modelers and researchers, since the logic is transparent and the model is easily maintained.
This is a potential detriment to model integrity for the same reason. There are ways to tell if a
model has been tampered with, however, as discussed above. Versioning, and the tracking of all
changes between versions is important. Nevertheless, developers and clients alike need to know
the configuration status of the model they are using, and the read-only media-released versions
always provide unambiguous starting points.

Release versions of the model(s) are delivered to the client on read-only media (such as a
CD-ROM), which inherently precludes modification of the models and supporting files. Using
this method of delivery ensures that there is no ambiguity about the model and supporting
documentation that constitutes the deliverable.

The standard GoldSim software allows for complete construction and editing of models. The
companion GoldSim Player, however, is currently available at no cost and can run GoldSim
models that have been specifically “exported” as Player versions. The Player version of the
model is not editable. For distribution to the general public, a GoldSim Player version of a Model
can be provided as part of the deliverable. The Player model cannot be modified in its significant
parts, though the user can still operate switches and controls to evaluate various effects.

GoldSim Model Development SOP 22 Feb 2011

GoldSim Model Development SOP 17

5.0 References

GTG (GoldSim Technology Group), 2010a, GoldSim User's Guide: Volumes 1 and 2, GoldSim
Technology Group LLC, Issaquah, WA.

GTG (GoldSim Technology Group), 2010b, GoldSim Contaminant Transport Module User's
Guide, GoldSim Technology Group LLC, Issaquah, WA.

Appendix C - EnergySolutions Issue Tracker Standard Operating Procedure

Neptune and Company (N&C) Internal Procedure
Confidential

General Procedure: Standard
Operating Procedure (SOP)
Contract Specific: Internal N&C
product

Document No.
06245-004

Version: 01

Document Status: Final

Title: EnergySolutions Issue Tracker SOP Author: Warren
Houghteling

Revised by: N/A

Final Approval Signatures Date

Corporate Quality Assurance Officer:
Print Name: James Markwiese
Signature:

Neptune and Company Project Manager:
Print Name: Paul Black
Signature:

Effective Date: 12/21/2010

 Date Stamp: 2/22/2011

2

Energy Solutions Issue Tracker for the Clive Performance Assessment Model
Standard Operating Procedure

Introduction
For the Energy Solutions Clive Facility Performance Assessment, Neptune and Company
has set up an issue tracking system for the performance assessment model and associated
documentation. An issue tracking system contributes to product quality in two major ways:

1. It assures that issues, once discovered, are not overlooked or “lost in the shuffle” by
providing a centralized location for all issue reports.

2. It provides documentation of how the issue was identified, the steps taken to correct
it, and the steps taken to verify that issue was in the end resolved in a satisfactory
manner.

Without a formal issue tracking system, this kind of information is often contained in
emails or other more transient forms of communications (e.g., instant messaging),
making it difficult to reconstruct the process that was followed in identifying and
resolving an issue. An issue tracking system provides a high level of transparency to the
issue discovery and resolution process, lending a much higher level of confidence to the
quality of the product being tracked.

The “ES Issue Tracker” is based on the open-source Bugzilla software defect tracking
system (http://www.bugzilla .org). As stated on the Bugzilla web site,

Bugzilla is a "Defect Tracking System" or "Bug-Tracking System." Defect Tracking
Systems allow individual or groups of developers to keep track of outstanding bugs
in their product effectively. Most commercial defect-tracking software vendors
charge enormous licensing fees. Despite being "free", Bugzilla has many features its
expensive counterparts lack. Consequently, Bugzilla has quickly become a favorite of
thousands of organizations across the globe.

Bugzilla is a web-based application, which makes is easy to access by anyone with a web
browser. The Neptune “ES Issue Tracker” uses version 3.4.6 of the Bugzilla software and is
hosted at http://zeus.neptuneinc.org/es-issuetracker/.

Bugzilla can be configured for use with one of a number of different database management
systems (DBMS) for its database back end. The ES Issue Tracker uses the PostgreSQL open-
source database management system (http://www.postgresql.org). The current
installation uses PostgreSQL version 8.3.9. The issues database is backed up nightly by an
automated script that runs on the database server machine.

Creating a User Account

To use the issue tracker, one must first create a user account. The site’s main page features
a large “Open a New Account” button as well as having “New Account” links that appear on

http://www.bugzilla.org/features/
http://www.bugzilla.org/installation-list/
http://zeus.neptuneinc.org/es-issuetracker/

3

both the top and bottom toolbars found on each page of the site. Once a user has created an
account and logged in, these links are replaced by “Log out” links.

Clicking on the button or on one of the links brings up a screen where the user is prompted
to enter a valid email address. All Bugzilla usernames are email addresses – this makes it
easy for Bugzilla to keep users informed of the status of the issues it tracks via email. Once
the user has entered an email address, they will receive an email confirming that their
account has been created. The email will provide a temporary password and instructions
for logging on to the site and setting up a permanent password and other aspects of their
user profile.

Bugzilla is designed to allow anyone who can access the site to create a user account.
However, the software can be configured with security permissions that strictly control
which users can access the different aspects of the site’s functionality. In other words,
despite its open architecture, Bugzilla is also able to tightly control “who sees what” in
terms of the information stored in the Bugzilla database.

Filing an Issue

When a problem is discovered with the performance assessment model or documentation,
anyone on the team may file an issue report. The home page features a large “File an Issue”
button, plus “new” links in the top and bottom toolbars. Upon clicking one of these, the
user will be directed to one of two pages. If they have not yet logged in, they will be
prompted to do so, and upon successful login they will be redirected to the Issue entry
form, or they will go straight to the entry form if already logged in.

At the top of the entry page are the following instructions: “Before reporting an issue,
please read the issue writing guidelines, please look at the list of most frequently reported
issues, and please search for the issue.” For the ES Issue Tracker, Neptune has customized
the issue reporting guidelines that come with Bugzilla to make them specific to
performance assessment model development. All users of the system MUST read this
document, as it specifies requirements for filling out an effective issue report, including
required fields (these are also covered in the following section). The other two links are
designed to help the user avoid entering duplicate information into the system, given that
more than one person may come across the same issue at more or less the same time.

Required Form Parameters

Product / Component
Bugzilla supports tracking issues with multiple different products in a single installation.
Each product has at least one “component,” a distinct functional unit against which issues
are tracked. The ES Issue Tracker is dedicated to a single product, the “Clive PA Model,” so
it is only necessary to choose a component.

http://zeus.neptuneinc.org/es-issuetracker/page.cgi?id=bug-writing.html
http://zeus.neptuneinc.org/es-issuetracker/duplicates.cgi
http://zeus.neptuneinc.org/es-issuetracker/duplicates.cgi
http://zeus.neptuneinc.org/es-issuetracker/query.cgi

4

Version
The user must select a version of the product against which to report the issue. If there is a
newer version of the model available, the user must try to reproduce the issue with the
latest version, in case it has already been addressed. The procedure for assigning versions
to GoldSim models is described in section 4.3 of the Neptune document “GoldSim Model
Development SOP.”

Summary
The summary field describes the issue in approximately 60 or fewer characters. A good
summary should quickly and uniquely identify an issue report. It should explain the
problem, not a suggested solution.

Description
This section provides the details of the problem report, including:

• Overview: More detailed restatement of summary.
o e.g. “Crash occurs on realization 138 when 1,000 realizations are selected.”

• Steps to Reproduce: Minimized, easy-to-follow steps that will trigger the issue.
Include any special setup steps.

o e.g. “Run v1.103 in probabilistic mode, with 1,000 realizations and the seed
set to 1.”

• Actual Results: What the application did after performing the above steps.
 e.g. “GoldSim crashes, without even an error dialog.”

• Expected Results: What the application should have done were the issue not
present.

o e.g. “Expected simulation to continue.”
• GoldSim Version: GoldSim version in which issue first encountered.

o e.g. “GoldSim v10.02”
• Additional Versions: Whether the issue exists in other model or GoldSim versions.

o e.g. “Also occurs using GoldSim 10.11, but cannot test older versions.”
• Additional Information: Any other useful information.

For crashing issues:
• Any information provided in an error message.

Optional Parameters
These parameters are preset with default values and do not necessarily need to be adjusted
by the person filing the new issue.

Severity
This parameter indicates the severity of the issue. Values range from “enhancement”
(essentially a new feature request rather than a defect) to “blocker” (an issue so severe that
it is preventing development from moving forward). Defaults to “normal” and can be
adjusted throughout the lifecycle of the issue.

5

Hardware
This value is hard-coded to “PC” as this is the only hardware that GoldSim currently
supports.

OS
Operating system – currently hard-coded to ‘Windows.”

Advanced Fields
At the top of the issue entry form is a link titled “Show Advanced Fields.” By clicking on this
link the user can adjust some fields that have already received default values based on the
values of the standard fields.

Priority
This field represents the priority that will be assigned to the issue. Priorities are used to
determine the order in which issues will be addressed. Priority may correlate with severity,
but do not necessarily need to do so. The default priority is P5, the lowest. Priorities will be
managed (usually by the technical lead in conjunction with the project manager) during the
issue triage process described during succeeding sections of this document.

Initial State
This defaults to “NEW,” but could be set to “ASSIGNED” if the issue is being reported by the
technical lead and they are ready to assign the issue to a team member. The meanings of
the different issue states will be discussed in the following section.

Assign To
Each component is given a default assignee when it is created. For the ES Issue Tracker, all
issues are initially assigned to the technical lead to be reviewed and assigned to the
appropriate team member. However, if the technical lead is reporting the issue, he might
choose to assign it directly to a team member.

CC
The CC list for an issue defines a list of users who will be cc’d on all emails generated by the
issue. Anyone who wants to be kept abreast of developments on the issue can be added to
the list. When a component is created, it can be assigned a default CC list. For the ES Issue
Tracker, the default CC list for each component includes the project manager and the
technical lead.

URL
This Bugzilla field is not used in the ES Issue Tracker implementation and can be ignored.

Depends on
This field can be used to indicate that the resolution of an issue depends on the resolution
of one or more existing issues. Input to the field should be a comma-separated list of
existing issue numbers. Bugzilla can use this information to create dependency trees that

6

illustrate the relationship(s) between issues. Bugzilla will also prevent issues that are
marked as depending on other issues from being changed to status RESOLVED until the all
its blocking issues are first marked as resolved.

Blocks
This field can be used to indicate that resolution of this issue blocks the resolution of one or
more existing issues. In other words, the other issues cannot be effectively resolved unless
this issue has been resolved first. Input to the field should be a comma-separated list of
existing issue numbers. Bugzilla can use this information to create dependency trees that
illustrate the relationship(s) between issues. As noted above, Bugzilla also requires that
issues blocking a given issue be resolved before the blocked issue may be marked as
resolved.

Committing the Issue Report
When all required fields (and possibly some or all of the optional fields) have had values
entered, the user clicks on the “Commit” button to add the issue report to the database. If
any required fields have not been set, the user will receive an error message and be asked
to hit the “back” button in their browser and fill in the missing information.

Once the issue is created, Bugzilla will send email to the issue assignee (unless the assignee
is the same user as the issue reporter) and anyone on the CC list for the issue, notifying
them of the creation of the issue and providing brief summary information and a URL link
to the full issue report. The reporter of the issue will not receive an email. Bugzilla’s default
behavior is to assume that a user who creates or updates an issue report knows that they
have done so and does not need an email notification. However, once the issue begins to
progress through its life cycle (described in the following section), the reporter will receive
email notifications whenever anyone else adds information to or changes the status of the
issue report.

Issue Life Cycle
Once it has been created, an issue report has a life cycle in which it moves from one status
state to the next until it reaches the “CLOSED” status, which indicates that the issue has
been resolved and the resolution verified. The management of this life cycle is the core of
how Bugzilla contributes to product quality by ensuring a rigorous QA process is followed
for issue resolution.

Issue Status
During its life cycle, an issue goes through a series of states described by the Status field.
There are two basic sets of states – “Open” states indicating that the issue is still active and
unsolved, and “Resolved” states indicating varying degrees of resolution of the issue. Some
Bugzilla tools, including the simple search page, use the term “open” to refer to all open
status states.

7

“Open” States

NEW
The NEW status indicates only that an issue has been entered into the system. Is has not
necessarily been interacted with in any way by anyone other than the original issue
reporter. NEW issues should be transitioned as quickly as possible to the ASSIGNED status.

ASSIGNED
The ASSIGNED status indicates that the issue has been initially triaged by the technical lead
and assigned to a team member for further investigation. The “assigned to” field does not
necessarily have to change during this step – the technical lead could keep the issue
assigned to himself. The most important thing about this state is that it indicates that the
first level of triage has been carried out – that at least the technical lead has looked at the
issue and made some decisions accordingly.

ACCEPTED
This status indicates that the issue assignee has seen and read the issue report and has
been able to reproduce the issue. By setting the issue status to ACCEPTED, the assignee
accepts responsibility for beginning the process of resolving the issue.

REOPENED
Once an issue is marked RESOLVED (see the following section), it must be independently
verified that a correct resolution to the problem has in fact been implemented. If this QA
step reveals that the issue was not correctly or completely resolve, the status should be
changed to REOPENED.

“Resolved” States

RESOLVED
This status is self-explanatory – it indicates that the issue is claimed to be resolved. When
status is changed to RESOLVED, the person doing so MUST explain how the issue was
resolved and refer to a specific version of the GoldSim model and/or documentation in
which the fix has been implemented. This is necessary so that the claimed resolution can
be independently tested rather than taken at face value.

While an issue is most frequently marked as RESOLVED because code and/or
documentation have been changed to correct the reported issue, it can also be marked
RESOLVED for a number of other reasons. Therefore Bugzilla has a “Resolution” field that
allows the user to indicate how the issue was resolved. The possible values for the
Resolution field (which only appears in the interface when Status is set to RESOLVED) are:

• FIXED – the default value; indicates that code and/or documentation has been
changed to address the issue

• DUPLICATE – indicates that the issue report is actually a duplicate of another issue
report. Sometimes this does not become apparent until after initial investigation of

8

the issue report. As part of assigning this status to a report, the user must indicate
the issue number of which the current issue is a duplicate.

• WONTFIX – indicates that while the issue described is valid, it will not be corrected
in the current release. For example, the issue might be of severity “enhancement,”
and while the team might agree that this is a worthwhile enhancement,
implementing it does not fall within current project scope or budget.

• WORKSFORME – indicates that all attempts to reproduce the issue have been futile.
If the issue re-surfaces in later testing, the issue report can be re-opened.

• INVALID – after investigating the issue, the assignee concludes that the issue does
not in fact represent a defect or problem that needs to be solved.

VERIFIED
This status indicates that someone other than the team member who marked the issue as
RESOLVED – FIXED had independently verified that the issue is indeed resolved.

CLOSED
Indicates that the issue’s life cycle is at an end. Once an issue is marked as VERIFIED, it can
be transitioned to CLOSED. However, some resolutions, such as INVALID and WONTFIX, do
not need to be verified -- they can be moved directly to CLOSED.

Issue Workflow
The workflow for a given issue is summarized in the following diagram, taken from the
Bugzilla User’s Guide and modified for the ES Issue Tracker:

9

10

The above workflow can be summarized as follows:
1. Issue report is created with status = NEW and assigned to the technical lead.
2. Technical lead triages the issue and assigns it to a team member – status changes to

ASSIGNED.
3. The team member to whom the issue has been assigned reviews the issue and

possession of it by changing status to ACCEPTED. At the very least, this indicates
that the team member is aware that a new issue has been assigned to them.

4. The assignee works to investigate and resolve the issue. At this point two basic
scenarios are possible:

a. The team member takes action that they feel resolves the issue, and they
change the status to RESOLVED with a resolution of FIXED. The team
member must add a comment to explain exactly what was done to resolve
the issue. If the issue was with a documentation component of the model (i.e.
the white papers, parameters document, etc.) the Subversion revision
number that contains the corrected document(s) must be included in the
resolution comment. If the issue was with the GoldSim model, the version of
the model in which the fix was implemented must be included in the
comment. Attempting to commit a change of status to RESOLVED without
including a comment will transfer to an error page which directs the user to
click the browser’s “back” button and add a comment.

b. The team member determines that the issue should be marked as resolved
using one of the other resolutions (DUPLICATE, WONTFIX, WORKSFORME or
INVALID – for the meanings of these, please see the previous section.). Again,
the team member must enter a comment explaining the rationale behind this
decision. At this point, we skip ahead to step 7 below.

5. As part of changing the status of an issue to status RESOLVED, the team member
must re-assign the issue to another team member to independently verify that the
issue has been successfully resolved. If the team member has any doubts as to
whom they should assign the report at this point, they should assign it back to the
technical lead, who will determine who should verify the issue’s resolution.

6. The new assignee attempts to independently verify that the issue is resolved.
a. If they agree, they changed the issue status to VERIFIED, and we progress to

step 7 below.
b. Otherwise, they change the status to REOPENED and assign the issue back to

the team member who marked it as resolved, taking us back to step 3 in the
process

In either case, the validator must provide a comment explaining in as much detail as
necessary why the issue either passed or failed verification.

7. This issue has its status changed to CLOSED and its lifecycle is ostensibly ended.
However, future testing might lead to the conclusion that the issue was not in fact
fully resolved, in which case the issue will have its status changed to REOPENED and
it will be assigned to the technical lead for triage, taking us back to step 2.

Interacting with Issue Reports
Once an issue report has been created and saved in the database, it can be accessed in
several ways:

11

• Via the link to the issue report included in the automated emails that Bugzilla sends
when the issue report is created or modified

• By entering the report’s issue number in the text field to the left of the “Find” button
in the top and bottom toolbar of each page of the ES Issue Tracker

• By searching for the issue

Searching for Issues
The ES Issue Tracker provides a large “Search” button on its home page and “search” links
in the top and bottom toolbars of each page of the site. All of these lead the user to the
search page. The search page has two tabs, entitled “Find a Specific Issue” (the default) and
“Advanced Search.”

Simple Search
The first tab (from this point on referred to as the “simple search interface”) has a form
with three fields, Status, Product, and Words.
“Status“ is a drop-down list with the terms Open, Closed, and All. “Open” reports are all
those whose status field contains “Open Status” as described in the previous section. For
the purposes of the search interface, “Closed” reports are all those reports whose status
field contains “Resolves Status” as described in the previous section. Choosing “All” means
that the query will not filter on status.
“Product” is another drop down list containing the values “All” and “Clive PA Model.” Since
the ES Issue Tracker is limited to single product, this field can essentially be ignored.
“Words” is a text field where the user can issue words that it wants to include in the query.
Bugzilla will search all “content” fields – the report summary, the description, and any
comments that have been added to the report (see below) for any of the words entered in
this field.

Advanced Search
The advanced search page provides the ability to create highly detailed searches by
specifying desired values for any of the different fields as well as specifying date ranges for
criteria such as when various aspects of the issue report changed (e.g. status, priority,
severity, etc.)
Team members who are new to this interface may find it daunting.
Because documenting all features of the advanced search would unnecessarily lengthen
this SOP, team members are advised to consult the team’s IT specialist for personal training
and assistance in using the interface if needed.

Saved Searches
Saved searches are an extremely powerful and useful Bugzilla feature. Once a search has
been defined using either the simple or advanced interface, the search can be given a name
and saved. The saved search will then show up as a link in the top and bottom toolbars.
Bugzilla provides one built-in saved search, called “My Issues,” that searches for all “open”
issue reports where the user is either the issue reporter or the current assignee. It is easy
to create other useful saved searches, such as all open issues dealing a given component, or
all issues assigned to a particular team member. Because Bugzilla stores these searches as

12

URLs, with the search criteria included in the URL’s query string, saved searches can easily
be shared among team members by simply sending an email or IM with the search URL,
which can then be used to execute and save the search in the target user’s profile.

The Issue Tracker as the Sole Means of Communication for Issue
Tracking and Resolution
As mentioned in the introduction, a major goal of the issue tracking system is to provide
documentation of how an issue was identified, the steps taken to correct it, and the steps
taken to verify that the issue was in the end resolved in a satisfactory manner. Therefore,
once an issue has been identified, the Issue Tracker should be the sole means of written
communication about the issue. The team accomplishes this by adding comments to the
issue report, and reassigning the issue among team members as necessary.

Adding Comments to the Issue Report
As the issue report transitions between states and is otherwise modified, team members
should add comments to the issue report that explain the state transitions and
modifications. For example, if the priority or severity fields are changed, a comment should
be added to explain why the priority is considered to be different (raised or lowered) than
it was previously. Most crucially, as mentioned earlier, when an issue is marked
RESOLOVED, a comment MUST be added to explain exactly what was done to resolve the
issue. This constraint is enforced by the software – attempting to commit a change of status
to RESOLVED without including a comment will transfer to an error page which directs the
user to click the browser’s “back” button and add a comment. If the issue was with a
documentation component of the model (i.e. the white papers, parameters document, etc.)
the Subversion revision number that contains the corrected document(s) must be included
in the resolution comment. If the issue was with the GoldSim model, the version of the
model in which the fix was implemented must be included in the comment.

Comments are also extremely useful for tracking progress in resolving non-trivial issues. If
debugging the issue involves significant testing and/or research, recording intermediate
results and progress in comments is an excellent way to preserve and share important
technical information. This also has the added benefit of keeping the technical lead and
project manager (plus potentially other interested parties) informed of progress on the
issue, as Bugzilla generates automated email notifications every time a change to the issue
report is committed to the database.

Adding Attachments to the Issue Report
Bugzilla also allows users to upload attachments to issue reports. This feature is especially
useful for attaching screen shots, spreadsheets, and other non-text information to the
report. Other candidates for attachments might be intermediate versions of documents that
are in the process of being amended and correspondence from interested parties who
might not have access to the Issue Tracker. Also, incremental versions of the GoldSim
model (versions whose version number ends in a letter – see section 4.3 of the “GoldSim
Model Development SOP” for details) may be attached to an issue report as a way to share

13

these versions during the process of issue resolution. Because of their size, GoldSim Models
should always be marked as “Big Files” by checking the “BigFile” check box on the
attachment upload interface. This means that they will be stored directly on the server’s
hard disk and can be deleted by the site administrator when appropriate (for example,
when a newer intermediate version is available, or the issue has been closed).

Reassigning an Issue
Sometimes a developer may need to reassign an issue to get help from another team
member. The other team member may go on to resolve the issue, or may simply provide
information or other help that allows the original assignee to complete the resolution. In
this latter case, the team member to whom the issue was re-assigned should assign the
issue back to the original team member once they have provided the requested assistance
(which should of course be recorded in one or more comments in the issue report).

Appendix D - EnergySolutions Checkprint Standard Operating Procedure

Neptune and Company Effective Date:
21 Dec 2010

Page 1 of 7

Neptune and Company (N&C) Internal Procedure
Confidential
General Procedure: Standard Operating
Procedure (SOP)
Contract Specific: Internal N&C product

Document No.
06245-005

Version: 02

Document Status: Final

Title: EnergySolutions Checkprint SOP Author: Michael Sully
Revised by: Michael Sully

Final Approval Signatures Date

Corporate Quality Assurance Officer:
Print Name: James Markwiese
Signature:

Neptune and Company Project Manager:
Print Name: Paul Black
Signature:

Effective Date: 12/21/2010

Date Stamp: 2/22/2011

Neptune and Company Effective Date:
21 Dec 2010

Page 2 of 7

EnergySolutions Check Print Process

for Verification of Data Entry

Purpose This procedure describes the method for providing a check
 for the completeness and accuracy of data entry processes.

Scope This procedure applies to manual or electronic data entry including data

documentation packages developed for model input, databases or
spreadsheets supporting models, and data/results tables included in
reports.

In this This procedure addresses the following major topics:
procedure

Topic See Page
General information about this procedure 1
Check print process 2
Records resulting from this procedure 3

General information about this procedure

Attachments This procedure has the following attachments:

Number Attachment Title No. of
pages

1 Check print 1 example 1
2 Check print 1 example data source document 1
3 Check print 2 example 1

Neptune and Company Effective Date:
21 Dec 2010

Page 3 of 7

History of This table lists the revision history and effective dates of this procedure
revision

Revision Date Description of Changes
0 8 Sep

2004
New document

1 21 Dec
2010

Revised signature page

Who requires Personnel verifying data entry processes.
training to
this
procedure?

Training The training method for this procedure is on-the-job training by a
method previously trained individual and is documented by signature on training

form and archived with project records

Prerequisites None.

Check print process

Overview

This procedure applies to work processes requiring the manual entry or
electronic transfer of data. Examples of entities that receive data include
data documentation packages for model input parameters, external
spreadsheets and databases used to provide input parameters for
modeling, and tables of data/results in documents. Using this procedure
data entry or transfer is verified by comparing values in the receiving
entity with values in the source documents/files to insure accuracy and
completeness of the data entry or transfer. An individual other than the
one compiling the data in the receiving entity should perform this check.
For manual data entry 100 percent of the entries are checked. For
electronic data transfer, 10 percent of the entries are checked. Inputs are
checked using the check print process described below. This process
can be used to verify most data entry tasks. Large files may require a
modified procedure.

Neptune and Company Effective Date:
21 Dec 2010

Page 4 of 7

Check print To check print manually entered or electronically transferred data
process perform the following steps:

Step Action
1 Obtain a paper copy of the receiving entity and a copy of the

data source document. For example, see attachments 1 and 2.
2 Compare the parameter value in the source document

including units with the value in the receiving entity to
determine if it was entered accurately and completely.

3 If the value is correct, mark with a highlighter
4 If the value is incorrect, circle in red ink and note the correct

value.
5 Verify that the cited reference for the value is correct and

complete with page number, table number, or other reference
as required.

6 If the reference is accurate and complete, mark with a
highlighter.

7 If the reference is inaccurate or incomplete, note corrections in
red ink.

8 Label the checked receiving entity as “Check Print 1”, sign,
date and return to the author for corrections.

9 When the corrections to the receiving entity are completed
follow the same process as described in Steps 1 through 7,
however, only the corrected values/references identified in
check print 1 need to be checked. See attachment 3.

10 Label this check print as “Check Print 2”. Date and sign.
11 Repeat this process until all data/references entered are

accurate and complete. The check print number is
incremented for each iteration. Keep all iterations for
archiving.

Records resulting from this procedure

Records The following records are created as a result of this procedure. Paper or
electronic copies are maintained at Neptune and Company as described
in the QAPP.

• All check prints
• Data source documents (or relevant sections thereof)

Neptune and Company Effective Date:
21 Dec 2010

Page 5 of 7

Attachment 1

An example GoldSim Parameter List - Check Print 1

\DoseAssessment\PlantCRFood

Plant/soil concentration ratios are taken from Kennedy and Strenge (1992) [Table 6.16 p.
6-25]. All values in the table are defined as geometric means. The following table
presents geometric mean values for four different plant parts and for each chemical
element. These values are also used in plant-induced contaminant transport calculations
(see the container \TransportProcesses\PlantTransport\PlantCRTransport).

element Leafy Veg Root Fruit Grain
 (Ci/kg dry Plant)

per
(Ci/kg dry Soil)

(Ci/kg dry Plant)
per

(Ci/kg dry Soil)

(Ci/kg dry Plant)
per

(Ci/kg dry Soil)

(Ci/kg dry Plant)
per

(Ci/kg dry Soil)
C 7.00E-01 7.00E-01 7.00E-01 7.00E-01
Cl 7.11E+01

7.00E+01
7.00E+01 7.00E+01 7.00E+01

Ar 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Reference
Kennedy, W.E.Jr., and D.L. Strenge, 1992. Residual Radioactive Contamination From

Decommissioning, NUREG\CR-5512, Vol. 1 Pacific Northwest Laboratory,
Richland, Washington.

Check Print 1 8 Sep 2004

Mary Jones

An error was found for the entry for Cl for Leafy veg. The incorrect value was marked in red and
the correct value was noted directly below it. The reference was determined to be incomplete
since the data source was a single table in a 376 page document. The specific location of the
table used as the data source was noted in red ink. The copy is labeled as Check Print 1 and is
signed and dated by the reviewer.

Neptune and Company Effective Date:
21 Dec 2010

Page 6 of 7

Attachment 2

Source Document Referenced in the Parameter List
Kennedy and Strenge (1992)

Neptune and Company Effective Date:
21 Dec 2010

Page 7 of 7

Attachment 3

An example GoldSim Parameter List - Check Print 2

\DoseAssessment\PlantCRFood

Plant/soil concentration ratios are taken from Kennedy and Strenge (1992) [Table 6.16, p.
6-25]. All values in the table are defined as geometric means. The following table
presents geometric mean values for four different plant parts and for each chemical
element. These values are also used in plant-induced contaminant transport calculations
(see the container \TransportProcesses\PlantTransport\PlantCRTransport).

element Leafy Veg Root Fruit Grain
 (Ci/kg dry Plant)

per
(Ci/kg dry Soil)

(Ci/kg dry Plant)
per

(Ci/kg dry Soil)

(Ci/kg dry Plant)
per

(Ci/kg dry Soil)

(Ci/kg dry Plant)
per

(Ci/kg dry Soil)
C 7.00E-01 7.00E-01 7.00E-01 7.00E-01
Cl 7.00E+01 7.00E+01 7.00E+01 7.00E+01
Ar 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Reference
Kennedy, W.E.Jr., and D.L. Strenge, 1992. Residual Radioactive Contamination From
Decommissioning, NUREG\CR-5512, Vol. 1 Pacific Northwest Laboratory, Richland,
Washington.

Check Print 2 8 Sep 2004

Mary Jones

The correction of the entry for Cl for Leafy veg and the additional data source information are
verified and marked. The check print number is incremented and the copy is signed and dated by
the reviewer. This is the final check print since the document is now accurate and complete.

	Neptune and Company Quality Assurance Project Plan
	1.0 Introduction
	2.0 Project Management and Organization
	3.0 Personnel Qualifications and Training
	4.0 Project Description
	5.0 Critical Tasks and Schedule
	6.0 Quality Objectives and Model Performance Criteria
	7.0 Documentation and Records
	8.0 Data Acceptance Criteria
	9.0 Data Management and Software Configuration
	10.0 Model Assessment and Response Actions
	11.0 Model Requirements Assessment

	Appendix A_cover
	Appendix A - EnergySolutions Subversion Standard Operating Procedure

	ES Subversion SOP_V1
	Introduction
	Repositories
	Accessing Repositories
	Obtaining a Subversion Account
	Subversion Clients
	Windows GUI
	Mac GUI
	Command Line

	Getting Started with Subversion
	Trunk, Branches, and Tags
	Checking Out
	Updating
	Conflicts

	Committing
	Adding New Files or Folders
	Why Commits Can Fail

	Reverting Changes

	Subversion Workflow
	Repository Creation
	Working with Existing Repositories
	Repository Browsing

	Making Changes
	Modifying Existing Files
	Using Locks to Enforce Serial Editing of Binary Documents
	Editing Binary Documents in Parallel

	Adding New Files
	Reorganizing the Structure of a Repository

	Appendix B_cover
	Appendix B - EnergySolutions GoldSim Model Development Standard Operating Procedure

	GoldSim Model Development SOP
	1.0 Introduction
	2.0 Modeling Lifecycle
	2.1 Conceptual Model Development
	2.2 Model Requirements Evaluation
	2.3 Verification of Software Installation
	2.4 GoldSim Model Development
	2.5 Model Data Inputs
	2.5.1 Input Data Selection
	2.5.2 Input Data Placeholders
	2.5.3 Data Acceptance Criteria
	2.5.4 Records of Parameter Values
	2.5.5 The Parameter List
	2.5.6 Check Prints

	2.6 Model Assessment
	2.6.1 Validation/Verification
	2.6.2 Benchmarking
	2.6.3 Reasonableness Checking

	2.7 Model Review

	3.0 Model Documentation
	3.1 Documentation Components
	3.2 Model Element Note Panes

	4.0 Model Configuration Management
	4.1 Model Custody
	4.1.1 Experimental Module Development
	4.1.2 Criteria for Making Changes

	4.2 Documentation of Changes
	4.2.1 Version Change Notes
	4.2.2 The Change Log

	4.3 GoldSim Versioning
	4.3.1 Model Version Numbers
	4.3.1.1 Incrementing the version number
	4.3.1.2 Creating a versioning report

	4.4 Model Testing
	4.5 Model Backup
	4.6 Error Reporting and Resolution
	4.6.1 Reporting Error Candidates
	4.6.2 Assessing Error Candidates
	4.6.3 Resolving Errors
	4.6.4 Error Resolution Verification
	4.6.5 Error Impact Assessment

	4.7 Model Distribution

	5.0 References

	Appendix C_cover
	Appendix C - EnergySolutions Issue Tracker Standard Operating Procedure

	ES Issue Tracker SOP
	Introduction
	Filing an Issue
	Required Form Parameters
	Product / Component
	Version
	Summary
	Description

	Optional Parameters
	Severity
	Hardware
	OS

	Advanced Fields
	Priority
	Initial State
	Assign To
	CC
	URL
	Depends on
	Blocks

	Committing the Issue Report

	Issue Life Cycle
	Issue Status
	“Open” States
	NEW
	ASSIGNED
	ACCEPTED
	REOPENED

	“Resolved” States
	RESOLVED
	VERIFIED
	CLOSED

	Issue Workflow
	Interacting with Issue Reports
	Searching for Issues
	Simple Search
	Advanced Search
	Saved Searches

	The Issue Tracker as the Sole Means of Communication for Issue Tracking and Resolution
	Adding Comments to the Issue Report
	Adding Attachments to the Issue Report
	Reassigning an Issue

	Appendix D_cover
	Appendix D - EnergySolutions Checkprint Standard Operating Procedure

	Checkprint procedure
	\DoseAssessment\PlantCRFood
	\DoseAssessment\PlantCRFood

